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1 N-body simulation

The bread and butter of exp is N -body simulation. Most of the software in the exp tree is focused on the
advancement of particles through time. A full description of all the assumptions, tuning parameters, and options
will be found elsewhere. In this document, I’m simply going to get exp started and troubleshoot any issues
after the fact. We’ll test everything interactively, but all options can be placed into a driver script.

Goals for this section:

1. Run test examples exercising different force methods in exp .

2. Read exp output files with Python.

3. Design new N -body experiments in exp .

The material for this tutorial is contained in NBodyTutorial.tar.gz. You should unpack this (tar -xvf

NBodyTutorial.tar.gz) in some directory on the same machine that has exp . Once unpacked, you will see
the following structure and input files:

1 NBodyTutorial /
2 Binary/
3 binary . yml
4 binary . bods
5 logpot . yml
6 SimpleHalo/
7 l i v e s ph e r e . yml
8 halo . bods
9 SLGridSph . model

10 DiskHalo/
11 galaxy . yml
12 halo . bods
13 SLGridSph . model
14 d i sk . bods
15 . e o f . cache . run0
16 s a t e l l i t e . yml

Believe it or not, this is all you need to get started and exercise quite a bit of the exp N -body codebase.

General N-body warnings. But even before we get started, there are also generic N -body warnings to try
not to run afoul of:

1. DO NOT just blindly interpret the outputs from an exp (or any N -body) simulation. Simulations are
complex machines with hundreds of input choices, some of which have been made implicitly. Always check
the diagnostics provided for anything that ‘looks funny’: rapidly changing or discontinuous quantities and
zeros are two primary warning signs.

2. Don’t trust something that seems too good to be true1.

1As will be discussed below, I’m thinking of timesteps, which can easily be too large, or trusting results on scales that simulations
are simply not senstive to (below the ‘resolution’). An interesting experiment with exp is breaking the timesteps by tinkering with
the multistep settings. As you change multistep and the dynfrac values, you can check how the timesteps changes by tracking the
.levels file.
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What shouldn’t I try to do with EXP, yet (at least not without a diagnostic plan)? The primary
limitation for the basis function pieces of exp lies in the perturbative nature of the basis representation. If the
mass distribution of a particular component gets ‘too far’ away from the initial distribution, the theory behind
basis function expansions will no longer work. The ‘feel’ of when a basis works or doesn’t work has been honed
by practitioners, but needs to be studied further. In this tutorial, we have not designed our own bases:
this is a goal of the next tutorial. Without designed bases, we are restricted in what problems we can
currently study – any components that do not match the density distribution of a component we have already
used (e.g. the halos and the particular exponential disc we used) are currently inaccessible.

1.1 First steps: a few-body integration

What happens when I mpirun exp? exp is designed to run with Open MPI2, so one does not simply type
exp at the command line3. Rather, one types mpirun exp to execute jobs using the Open MPI framework. You
can man mpirun to read the gory details, but for our purposes, it is sufficient to simply specify the number of
processors, e.g. mpirun -np 12 exp -h to use 12 processors and read the help message.

For the purposes of this tutorial, we’ll be using SLURM scheduling software, in interactive mode.
If you are using PBS, or no scheduler, you may omit the srun commands. Typical startups to get to
a place to run exp will look something like

1 srun −n1 −−pty $SHELL # s t a r t a 1−node i n t e r a c t i v e job
2 export LD LIBRARY PATH=/home/mpete0 umass edu/ l i b :$LD LIBRARY PATH # se t the l i b r a r y path on the node
3 which exp # /home/mpete0 umass edu/ bin /exp
4 ldd /home/mpete0 umass edu/bin /exp # va l i d a t e the l i b r a r i e s ( check t ha t none are miss ing ! )

When exp is first called, you will see a stanza listing the processors that have been engaged, as well as a
banner listing the version header:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%% This i s EXP 7.6994 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %%%%% Repos i tory URL | https : // mdweinberg@bitbucket . org /mdweinberg/exp . g i t %
5 %%%%% Current branch | deve l %
6 %%%%% Current commit | f4090892c7b638112c1163bf57c0157cc67d6e72 %
7 %%%%% Compile time | 2022−01−27 09 : 31 : 25 UTC %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

To feed an input file to exp , the standard usage is something like mpirun -np 12 exp config.yml where
the input file is in .yml format – discussed in more detail below. For now, we will consider a general global
stanza. Users will always need to change specific lines in a .yml input file. These are found at the very beginning
of the file, in the ‘Global’ stanza.

1 runtag : the name o f your run : a l l f i l e s are stamped with t h i s ( no spaces ! ) .
2 outd i r : /path/ to /output / f i l e s
3 nsteps : how many l a r g e t imes teps to i n t e g r a t e ( i n t e g e r )
4 dtime : the l a r g e t imestep ( f l o a t ) . See note .
5 mul t i s t ep : how many time subd i v i s i o n s to a l low . See note .
6 dynfrac {A,V,P} : mu l t i s t ep time algor i thm p r e f a c t o r s . See note .
7 l d l i b d i r : /path/ to / l i b / user −− See note .
8 VERBOSE : how chatty the code i s

Notes about the above parameters:

1. dtime is the large(st) timestep any particle will ever take. Typically this is between 0.001 and 0.01 virial
units (see below). This timestep also sets the index for output routines (see below).

2. The smallest allowed step will be 2multistep times smaller than dtime. For example, if dtime=0.01 and
multistep=3, the smallest timestep will be 0.01/8 = 0.00125. Typically, multistep is in the 4-6 range.
Opening more levels will add computational time.

3. The prefactors, which set the multistep level for particles, should be of the order how many steps you wish
to take per orbital period. We usually shoot for about 100 steps per orbital period, so a first estimate4 of
the dynfrac parameters should be ' 0.01.

2Message Passing Interface, a protocol by which different distributed computers communicate
3For completeness, some exp routines will run without mpirun, and all can be run with mpirun. It is generally recommended

to take advantage of the parallel processing capability, and use mpirun.
4Optimising runtime by adjusting multistep and timesteps is an advanced topic that will be covered in other tutorials as needed.
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4. ldlibdir is the path where the user modules are installed. This is not needed to make exp run, but if
you wish to use a user module (see below), you will need this directory to be correct. On startup, exp will
search this directory for libraries and print a list of the available routines.

5. VERBOSE sets how much to report. VERBOSE=0 will run the code in ‘silent’ mode. VERBOSE=4 will return
timing information as the code is running, and is a typical choice. Higher values of VERBOSE will return
deeper debug information, and is usually not needed.

When should I use sphereSL/cylinder/direct/noforce/other? exp is unique in the variety of force
evaluation methods offered for N -body interaction, and crucially, the ability to mix and match different force
methods. Choosing the correct force method for your problem is usually straightforward, by following this
cheatsheet:

1. direct computes softened direct interactions between all particles, and should be used for small numbers
of bodies, and/or investigations that require physical effects. Different softening kernels are available,
which we will not discuss here. We recommend using the spline kernel (set type:Spline).

2. sphereSL uses Sturm-Liouville solutions to the Poisson equation to represent radial basis elements, and
spherical harmonics for angular basis elements. This should be used for roughly spherical components
where one wishes to include self gravity.

3. cylinder starts with a high-order Sturm-Liouville basis and creates empirical orthogonal functions that
best match the target density distribution5. This should be used for flattened objects, like discs.

4. noforce applies no force, and should be used if one is running pure test particles6. This will almost always
be used with some sort of external imposed potential, typically through a user module.

There are other force evaluators too (purpose-built Hernquist and Clutton-Brock bases, 1d slab models, 2d disc
bases), but the use of these is both advanced and atypical.

Integrating binary stars. We’ll start with the simplest possible N -body integration: a binary with only
two components to check for libraries and validate the code. This example uses a direct-summation force, so it
does not exercise anything more than whether the code machinery will run, and serve as a first introduction to
the input files. In the NBodyTutorial/Binary/ folder, you’ll find everything you need to run this example.

First, using the provided binary.yml, inspect the file using a text editor. You will see the Global stanza
as described above, followed by a ‘Component’ stanza, followed by an ‘Output’ stanza (and two more empty
stanzas: ‘External’ and ‘Interaction’, discussed below). After editing the output folder in the Global stanza,
you are ready run your first exp N -body simulation! To run interactively, simply type

1 mpirun −np 1 exp binary . yml # do a few i n t e r a c t i v e s t e p s o f the b inary : a lways need mpirun !

You can break the evolution after 30 seconds or so by typing ctrl+C, or the whole simulation takes about a
minute. If you now look in the folder (ls -lah), you will see new files! I now have

1 OUTLOG. run0
2 ORBTRACE. run0
3 run0 . l e v e l s
4 c on f i g . run0 . yml
5 cur rent . p ro c e s s o r . r a t e s . run0

We’ve asked exp to print the general log file (OUTLOG), a trace of the orbits (ORBTRACE), the multistep level
diagnostics (run0.levels). exp will also print the configuration file config to record the inputs, and a
diagnostic file recording the speed of different processors (only useful on heterogenous systems, you shouldn’t
have to worry about this). We’ll look at the majority of the diagnostics a bit later, but if you wanted to read
the ORBTRACE file, it’s a straightforward ascii file that can be read and plotted in Python 7:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3
4 def r e ad o rb t r a c e ( f i l ename ) :
5 ””” d e f i n i t i o n to read EXP ’ORBTRACE’− s t y l e f i l e s
6 One l a r g e d i c t i ona r y i s returned , wi th sub−d i c t i o n a r i e s .
7 Each o r b i t i s re turned as a sub−d i c t i onary , wi th po s i t i on s ,

5If you look in the code, this will be called EmpCylSL.
6Particles which don’t source their own gravity, but rather ‘test’ the potential.
7Also available as a GitHub gist.
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8 v e l o c i t i e s , and a c c e l e r a t i o n s .
9 ”””

10 # each o r b i t has var ious q u a n t i t i e s p r in t ed :
11 names = [ ’ x ’ , ’ y ’ , ’ z ’ , ’ u ’ , ’ v ’ , ’w ’ , ’ ax ’ , ’ ay ’ , ’ az ’ , ’ l e v ’ ]
12 # open the f i l e once to see the s t r u c t u r e
13 A = np . genfromtxt ( f i l ename , sk ip heade r =100)
14 # how many en t r i e s are t he r e in the f i r s t row?
15 columns = A. shape [ 1 ]
16 # compute the number o f o r b i t s
17 n o r b i t s = int ( ( columns −1)/10)
18 # now go back and read in the data to c r ea t e s epara t e o r b i t s
19 A = np . genfromtxt ( f i l ename , sk ip heade r=columns+1)
20 Orbit = dict ( )
21 for o rb i t in range ( n o r b i t s ) :
22 Orbit [ o r b i t ] = dict ( )
23 for ikey , key in enumerate( names ) :
24 Orbit [ o r b i t ] [ key ] = A[ : , 1 0 ∗ o rb i t+ikey+1]
25 return Orbit
26
27
28 O = read o rb t r a c e ( ’ORBTRACE. run0 ’ )
29 p l t . p l o t (O[ 0 ] [ ’ x ’ ] ,O [ 0 ] [ ’ y ’ ] , c o l o r=’ black ’ )
30 p l t . p l o t (O[ 1 ] [ ’ x ’ ] ,O [ 1 ] [ ’ y ’ ] , c o l o r=’ red ’ )

The resulting figure is shown in Figure 1. We’ve successfully run a first integration using the exp machinery!
We’ll come back for the other output files shortly.

Figure 1: The result from the simple ‘Binary’ exp test.

1.2 A first many-body example

How do I tell EXP about the configurations I want? In the binary example, we saw the different
stanzas of the .yml input in action, but we didn’t explore in any detail. Arguably the most important from the
N -body perspective is the stanza that specifies the components. We’ll look at some test cases here.

1 Components :
2 − name : binary
3 parameters : { n l e v e l : 1 , index ing : true}
4 body f i l e : b inary . bods
5 f o r c e : { id : d i r e c t , type : Sp l i n e }

The parameters list under the component name is a catchall that we will fill out more later. The two parameters
we currently set are nlevel, which sets the frequency that multistep levels are reported (in units of dtime from
the Global stanza), and indexing, which tells exp to keep track of particle indices (typically not needed, but
it is safest to keep this true).

The input location of points to be integrated is bodyfile. The format of the bodyfile is simple ascii, with
each line of the file a simple list of

1 mass xpo s i t i on ypo s i t i on zpo s i t i o n xv e l o c i t y yv e l o c i t y z v e l o c i t y

An additional header line specifying the number of bodies, as well as the number of additional integer and float
attributes (not needed for standard exp usage, so simply set both to 0):

1 nbodies n i n t e g e r a t t r i b u t e s n f l o a t a t t r i b u t e s
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Using the Binary example, if we inspect binary.bods, we see (the entire file!)

1 mpete0 umass edu@login : / nas/ astro−th/mpetersen/Binary$ more binary . bods
2 2 0 0
3 1 .0 1 .0 0 .0 0 .0 0 .0 0 .2 0 .0
4 1 .0 −1.0 0 .0 0 .0 0 .0 −0.2 0 .0

You should be able to translate the different elements of the file using the instructions above.
The force is specified with id call in the force entry, which will also take any and all additional parameters.

In this case, we used direct, so the only force in the problem was each body in the binary influencing each
other. We’re now ready for a more complex example, which is our first foray into the guts of exp technology.

Evolving an isolated halo. This test is located in NBodyTutorial/SimpleHalo. The test is a simple example
of using an adaptive spherical basis, sphereSL. The model only has one component, a spherical halo. The target
halo model is specified here in the ascii file SLGridSph.model.

1 − name : dark halo
2 parameters : { n l e v e l : 1 , index ing : true}
3 body f i l e : ha lo . bods
4 f o r c e :
5 id : sphereSL
6 parameters :
7 modelname : SLGridSph . model
8 Lmax : 6
9 nmax : 20

10 numr : 4000
11 rmin : 0 .0001
12 rmax : 1 .95
13 r s : 0 .0667
14 s e l f c o n s i s t e n t : true

We see the familiar component name, parameters, and bodyfile. However, we’re now seeing our first basis
function parameters with a new force force option: the sphereSL force class. When using sphereSL, we need a
spherical model file. In this case, the model file is called SLGridSph.model. We can inspect the file:

1 mpete0 umass edu@login : / nas/ astro−th/mpetersen/SimpleHalo$ more SLGridSph . model
2 ! S ca l i ng : R=2 M=1.008 alpha=1 beta=3 rco r e =0.015 r t runc=15 wtrunc=4
3 ! 1) = r 2) = rho 3) = M( r ) 4) U( r )
4 1000
5 3.333333333333 e−05 4.049325987474 e+04 0.000000000000 e+00 −1.597315671103 e+01

(the file continues.) This is the general format for spherical model tables in exp : four columns, one each of
spherical radius, three-dimensional density, mass enclosed, and potential. There is also one additional required
header row that specifies the number of entries in each column (here, 1000). The first two rows are c omments,
with a leading ‘!’. More comment rows may be added. Construction of spherical models is covered in the next
tutorial.

With this spherical model table, we can then choose the harmonic order lmax (we chose 6, which will give
us all spherical harmonics up to ` = 6 as the angular solution) and the number of radial functions per harmonic
order nmax (we chose 20, which is typical for halo simulations). The additional parameters set the minimum
and maximum radius (0.0001 and 1.95, respectively, in virial units!) and number of grid points (4000). Under
the hood, exp uses a rescaling of the radial interval to the interval [-1, 1] with a scale factor rs = 0.0667 using
the scaling function x = (r/rs−1)/(r/rs+1). Therefore, rs should be chosen to be roughly the scale parameter
of the model. The parameter self_consistent tells the code to recompute the basis at every step. If false,
the gravitational field is fixed after the first evaluation8.

This simulation will best run with slightly more computational power, so we will request more nodes from
SLURM, and again run the simulation in interactive mode:

1 srun −n12 −−pty $SHELL
2 mpirun −np 12 exp l i v e s ph e r e . yml

Immediately after starting the simulation, a new file will appear in the directory: SLGridSph.cache.run0. This
file holds the functions for the basis, which may be read back in by exp (more on this later).

8This is how one can ‘freeze’ components, such that they act as test particles, but you have all the advantages of the initial basis
flexibility.
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Primary outputs from EXP (How do I read the log files? How do I read the phase-space files?
How do I read coefficients?) In the ‘Output’ stanza, we’ve seen a few different entries so far. If we look
at the SimpleHalo run, we see

1 Output :
2 − id : out log
3 parameters : { nint : 1}
4 − id : outpsn
5 parameters : { nint : 10}
6 − id : outchkpt
7 parameters : { nint : 50}

The parameter nint set the frequency that outputs are created, in units of dtime (from the ‘Global’ stanza).
After the simulation completes (about three minutes), we also see new files in the directory, in addition to the
same files we saw in the binary example run (abridged list):

1 OUTLOG. run0
2 OUT. run0 .00000
3 OUT. run0 . chkpt

Each file is generated by a different output routine. The most common output routines are

1. orbtrace, a helper to record a subset of orbits. We have already seen this in action above. Useful for
very small components, or to gain extra diagnostic information about a handful of (say, 100) orbits.

2. outlog, which prints the general diagnostics for each component. See immediately below for an example.

3. outpsn, the most common phase-space writer, in ‘Phase-Space Protocol’ format. These files start with
OUT. and end in a 5-digit number. This method is best used for large files, as it will write in binary
format to consolidate space. The downside is that it requires a custom reader. exp will handle these files
internally, and a Python reader is available in the source branch here9.

4. outchkpt, the checkpoint writer, used for restarting long simulations. These files start with OUT. and end
in .chkpt. Typically these can have very infrequent saves, but are the best file to restart a run10.

5. outcoef, the coefficient writer. exp will handle the format flexibly. Python support is offered by OutCoef,
in the exptool tree, located here (to be consumed into exp ). See below in the disc+halo example. The
file formats differ between a sphereSL and cylinder component.

6. outpsq, a parallel-write version of the phase space files. These files start with SPL. and end in 5-digit
numbers. Best used when running in GPU mode when outputting phase spaces frequently, where write
times can be a large part of the runtime. These files can be read in using the same routine as outpsn in
the source tree.

7. outascii, an ascii version of the phase-space writer. Best used for small numbers of particles, only.

Additionally, many tools are already available for N -body analysis. exp provides a suite of tools for N -body
analysis in the Analysis folder. exptool offers comprehensive Python analysis support, tailored to match exp .
In some cases, the needed code has been merged into the exp source tree; in other cases there is still ongoing
development. In particular, reading phase-space files can be straightforwardly done in Python using the psp_io

routine, and specifying the name of the component you want to read:

1 O = psp i o . Input ( ’OUT. run0 .00000 ’ , ’ dark halo ’ )

This will create a class which holds the phase space data as a .data dictionary, with keys holding the position
and velocity. For example, to make a simple scatter plot of the x− y plane using the above output,

1 p l t . f i g u r e ( f i g s i z e =(4 ,4))
2 p l t . s c a t t e r (O. data [ ’ x ’ ] ,O. data [ ’ y ’ ] , c o l o r=’ black ’ , s =2.)

Another good place to start for analysing any run is with the OUTLOG file, which can be straightforwardly
read using the below definition11:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3
4 def r ead out l og ( f i l ename ) :

9Or the cutting-edge version as part of exptool , called particle.py, located here.
10Using the ‘Global’ stanza parameter infile : OUT.run0.chkpt, for example.
11Also available as a GitHub gist.
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5 ””” d e f i n i t i o n to read EXP ’OUTLOG’− s t y l e f i l e s
6 One l a r g e d i c t i ona r y i s returned , wi th sub−d i c t i o n a r i e s .
7 Each component i s re turned as a sub−d i c t i onary , wi th po s i t i on s ,
8 v e l o c i t i e s , and energy conserva t i on .
9 An add i t i o n a l sub−d i c t i onary , wi th g l o b a l q u an t i t i e s , i s a l s o inc luded .

10 ”””
11 # each o r b i t has var ious q u a n t i t i e s p r in t ed :
12 g loba l co lumns = [ ’ time ’ , ’mass ’ , ’ bod ie s ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ u ’ , ’ v ’ , ’w ’ ,\
13 ’Lx ’ , ’Ly ’ , ’ Lz ’ , ’KE’ , ’PE ’ , ’VC’ , ’E ’ , ’ 2T/VC’ , ’ c l o ck ’ , ’ used ’ ]
14 component columns = [ ’mass ’ , ’ bod ie s ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ u ’ , ’ v ’ , ’w ’ ,\
15 ’Lx ’ , ’Ly ’ , ’ Lz ’ , ’Cx ’ , ’Cy ’ , ’Cz ’ , ’KE’ , ’PE ’ , ’VC’ , ’E ’ , ’ 2T/VC’ , ’ used ’ ]
16 # open the f i l e once to see the s t r u c t u r e
17 A = np . genfromtxt ( f i l ename , sk ip heade r=6, d e l im i t e r=’ | ’ )
18 # how many en t r i e s are t he r e in the f i r s t row?
19 columns = A. shape [ 1 ]
20 # compute the number o f components
21 n components = int ( ( columns −19)/20)
22 # go back and prepare to ge t the component names
23 B = np . genfromtxt ( f i l ename , sk ip heade r=2,comments=”@” , d e l im i t e r=’ | ’ , dtype=’ S20 ’ ,\
24 i n v a l i d r a i s e=False )
25 Log = dict ( )
26 # f i r s t read in the g l o b a l component
27 Log [ ’ g l oba l ’ ] = dict ( )
28 for ikey , key in enumerate( g loba l co lumns ) :
29 Log [ ’ g l oba l ’ ] [ key ] = A[ : , i key ]
30 for component in range ( n components ) :
31 # ge t the co r r e c t component name
32 s t = B[ 0 ] [ 2 0 ∗ component+19] . s p l i t ( )
33 i f len ( s t )>1:
34 s t = [ s . decode ( ) for s in s t [ 0 : −1 ] ]
35 component name = ’ ’ . j o i n ( s t )
36 else :
37 component name = s t [ 0 ] . decode ( )
38 Log [ component name ] = dict ( )
39 for ikey , key in enumerate( component columns ) :
40 Log [ component name ] [ key ] = A[ : , 2 0 ∗ component+ikey +19]
41 return Log
42
43
44 O = read out l og ( ’OUTLOG. run0 ’ )
45 print (O. keys ( ) )
46 p l t . f i g u r e ( f i g s i z e =(4 ,3))
47 p l t . p l o t (O[ ’ g l oba l ’ ] [ ’ time ’ ] ,O[ ’ dark halo ’ ] [ ’KE’ ] , c o l o r=’ black ’ )
48 p l t . p l o t (O[ ’ g l oba l ’ ] [ ’ time ’ ] ,O[ ’ dark halo ’ ] [ ’PE ’ ] , c o l o r=’ red ’ )
49 p l t . x l ab e l ( ’ time ( v i r i a l un i t s ) ’ )
50 p l t . y l ab e l ( ’ energy ( v i r i a l un i t s ) ’ )

The resulting plot is shown in Figure 2. The kinetic and potential energy show show drift, but the sum is
(largely) conserved. We can also use an additional exp helper routine to inspect the headers of PSP files, using
the command pspinfo OUT.run0.00000. We’re now ready to mix together multiple components, which we will
do as a stellar disc and dark halo example.

Figure 2: Kinetic and potential energy from the ‘SimpleHalo’ test.
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1.3 A second many-body example

A first disc+halo integration. This test is located in NBodyTutorial/DiskHalo. The test is a simple
example of using an adaptive cylindrical basis, cylinder, combined with the same spherical basis we used in
the previous example. If we inspect the .yml file, we now see an additional entry in the ‘Components’ stanza:

1 − name : s t a r d i sk
2 parameters : { n l e v e l : 1}
3 body f i l e : d i sk . bods
4 f o r c e :
5 id : c y l i nd e r
6 parameters :
7 acy l : 0 .01
8 hcy l : 0 .001
9 mmax : 6

10 ncy lo rde r : 8
11 lmax : 32
12 nmax : 32
13 ncylnx : 256
14 ncylny : 128
15 l o g r : fa l se
16 s e l f c o n s i s t e n t : true

Crucially, we now need a basis for the stellar disk. For the purposes of this tutorial, we have provided a basis
cache file. We will cover generating cylindrical bases in the next tutorial session. The provided basis cache
file was produced in the x86_64 architecture, with the parameters specified above. This cache file contains a
pre-made set of disk basis functions. It will be read from the ‘outdir’ directory in the Global stanza. If you’d
like to have a different outdir from this current working dir, please move .eof.cache.run0 to your ’outdir’.

In general, exp will default to remake the cylindrical basis if it finds that the cachefile does not equal the
specified parameters. However, this is computationally expensive. Therefore, particular care should be taken
if one is passing a cachefile to exp in order to make sure it is accepted. The other specified parameters must
match the cachefile, or exp will attempt to remake the basis. When running exp and inspecting the outputs,
you can see if the cached basis was accepted by looking for

1 EmpCylSL : : c a che g r i d : f i l e read s u c c e s s f u l l y
2 EmpCylSL : : r ead cache : t ab l e forwarded to a l l p r o c e s s e s
3 Cyl inder parameters : nmax=32 lmax=32 mmax=6 mlim=−1 ncy lo rde r=8
4 ncylodd=−1 rcylmin=0.001 rcylmax=20 acy l =0.01 hcy l =0.001 expcond=1
5 pcavar=0 pcaeo f=0 nvtk=1 npca=50 npca0=0 pcadiag=0
6 e o f f i l e =. eo f . cache . run0 ove r r i d e=fa l se l o ga r i thmi c=fa l se v f l a g=0

where the last lines report the full set of parameters used to generate the basis. In this case, we see that we
are using harmonic order m = 6 (similar to the halo), n = 8 (fewer than the halo). The basis was designed
to approximate an exponential disc with a scale height to scale length ratio of 1:10. Other parameters will be
covered in later tutorials.

Two more pieces of crucial information to note in the .yml file. First, there can now be entries in the
‘Interaction’ stanza. Whenever a run includes multiple components, they will all feel each other’s forces by
default. If you wanted some forces to not feel each other, you would include specific interaction you wanted off:

1 I n t e r a c t i o n :
2 dark halo : s t a r d i sk
3 s t a r d i sk : dark halo

Components always feel their own force unless noforce is specified.
Second, we ask exp to record the component coefficients using outcoef. Unlike the other output routines,

here we must specifically request the output for each component.

1 − id : ou tcoe f
2 parameters : { nint : 1 , n intsub : 10 , name : s t a r disk , f i l ename : outcoe f . s t a r . run0 }
3 − id : ou t coe f
4 parameters : { nint : 1 , n intsub : 10 , name : dark halo , f i l ename : outcoe f . dark . run0 }

We have introduced another option, nintsub, which records coefficients at the requested multistep level. Here
we are requesting 10, so that the coefficients are printed at every substep.

This simulation is small, and will also run (fairly) quickly as an interactive job (try to replicate from the
commands above!). When complete, we will see two new files in the directory:

1 outcoe f . dark . run0
2 outcoe f . s t a r . run0
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Which hold the coefficient time series. Next, we will cover how to do a simple analysis of the coefficients.

Coefficient analysis In all likelihood, you are here for the exp coefficients in one form or another. To read
the outputs from the coefficient files, one may either interface with various exp routines (including binary file
structure if one wishes to read into another program, such as mssa ), or use a Python interface that will read
the coefficients directly. The Python version is offered as a standalone tool.

1 from exptoo l . i o import outcoe f
2
3 O = outcoe f . OutCoef ( ’ ou t coe f . dark . run0 ’ )
4 p l t . f i g u r e ( f i g s i z e =(4 ,3))
5 for n in range ( 0 , 5 ) :
6 p l t . p l o t (O.T,O. c o e f s [ : , 0 , n ] , c o l o r=cm. v i r i d i s (n / 4 . ) )
7
8 p l t . x l ab e l ( ’ time ( v i r i a l ) ’ )
9 p l t . y l ab e l ( ’ amplitude ’ )

10
11 # don ’ t p l o t the lowes t−order func t ion ,
12 # so we can see some dynamic range
13 p l t . f i g u r e ( f i g s i z e =(4 ,3))
14 for n in range ( 1 , 5 ) :
15 p l t . p l o t (O.T,O. c o e f s [ : , 0 , n ] , c o l o r=cm. v i r i d i s (n / 4 . ) )
16
17 p l t . x l ab e l ( ’ time ( v i r i a l ) ’ )
18 p l t . y l ab e l ( ’ amplitude ’ )

The same routine will also read cylindrical files, as shown in this example.

1 O = outcoe f . OutCoef ( ’ ou t coe f . s t a r . run0 ’ )
2 p l t . f i g u r e ( f i g s i z e =(4 ,3))
3 for n in range ( 0 , 5 ) :
4 p l t . p l o t (O.T,O. c o e f s [ : , 0 , 0 , n ] , c o l o r=cm. v i r i d i s (n / 4 . ) )
5
6 p l t . x l ab e l ( ’ time ( v i r i a l ) ’ )
7 p l t . y l ab e l ( ’ amplitude ’ )

The figures from the two blocks of code are shown in Figure 6.

Figure 3: Three plots of the coefficients in the ‘DiskHalo’ test.

1.4 Making exp your own

Special circumstances, User modules (How do I set up a particular specialised test in EXP?)
The easiest way to create extendable features in exp is through user modules. For example, we can create a
static potential background in which to run additional models through a User extension. When exp starts up,
you will see a list of the available routines:

1 Ext e rna lCo l l e c t i on :
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Loaded user l i b r a r i e s < l i b d i s k . so l i b e b a r . so l i b h a l o . so l i b l o g p o t . so l ibmndisk . so l i b u s e r . so>
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 Ava i l ab l e user r ou t i n e s are <us e rd i s k userebar use rha lo use r l ogp usermndisk user sat>
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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(There will likely be many more!) If you do not see a list of user modules when booting exp , you likely need
to check your ldlibdir parameter in the Global stanza. Some user routines are generally available, but the
release plan for exp will include a small number, with the expectation being that users will write their own.
The typical call to a user module will look like:

1 External :
2 − id : u s e r l ogp
3 parameters : {R : 0 . 1 , b : 1 . , c : 1 . , v2 : 0 .9}

When user routines are initialised, you will typically get a banner that describes the routine and the rough
effect it will have. Let’s try a couple examples, building on what we tried before. First, let’s re-run the binary
elements in an imposed logarithmic potential using the parameters above.

The binary elements, in a fixed logarithmic potential. This test is in the Binary/ directory, but uses
a different input file (logpot.yml). Our first exposure to a user routine will be running the binary elements
with no self gravity, but rather in an imposed logarithmic potential. The commands to run the simulation
are identical, and we’ve only changed a handful of things in he .yml file. In particular, this is our first use of
noforce. The resulting figure is shown in Figure 4. We’ve used our first imposed potential and user routine!

If we take a peek under the hood at the code that enabled the integration here, it’s really not too bad at all
– one can perhaps start to see how the code framework would be extendable. You do not have to use noforce

when using an external potential: you could still allow the binary elements to feel each other’s gravity by
enabling direct. If one were to run a cluster of stars in an imposed background galaxy potential (for example),
one would still want the self-gravity of the cluster to be on, for instance.

Figure 4: The result from the simple ‘Logarithmic Potential’ exp test.

Perturbing the galactic disc with a satellite. Another user module one may wish to use is usersat,
which introduces a softened point mass satellite to the simulation. All components will feel the force from the
satellite. The main code for usersat is found here, though users will (currently) need to follow through the
code to find all the options.

To set the satellite parameters, one must specify the mass (mass) and the Plummer softening (core).
Additionally, one sets the key times in the simulation: ton/toff sets the centre of the error function turn-
on/off, delta sets the width of the error function, and toffset slides the orbits from the fiducial time (based
on trajectory types, below, the fiducial time is usually when pericentre is reached). We also set orbit=true

to print the trajectory of the orbit. One may also set shadow=true to set an exact replica of the satellite that
cancels out the odd-order components – usually used for testing bar formation.

There are four options for trajtype:

1. circ, a forced circular orbit in the potential of the simulation. (trajtype=0)

2. bound, a self-consistent orbit in the potential of the simulation (trajtype=1, SatelliteOrbit.cc)

3. unbound, an unbound, self-consistent orbit in the potential of the simulation (trajtype=2, UnboundOrbit.cc)

4. linear, a specified linear flyby (trajtype=3, LinearOrbit.cc)

Each trajectory has several options, passed through a config stanza. For example, a full usersat call setting
a satellite on a linear orbit flying by the galaxy might look something like:
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1 External :
2 − id : u s e r s a t
3 parameters :
4 o r b i t : true
5 ton : 0 . 2
6 core : 0 .03
7 mass : 0 .05
8 de l t a : 0 .05
9 t o f f s e t : 0 . 2

10 shadow : true
11 t r a j t yp e : 3
12 c on f i g :
13 X0 : 0 . 2
14 Y0 : −0.5
15 Z0 : 0 .
16 Vsat : 1 .

Running the simulation will generate UserSat.run1.1, which is the trajectory file for the satellite. Note that
for a linear orbit, the parameters for the trajectory are the initial positions {X,Y, Z}, and Y velocity (Vsat).
One may also rotate the orbit of the satellite using three Euler angles THETA, PSI, and PHIP to re-orient the
initial plane.

The same diagnostic plots from Figure 6 are shown in Figure 5, except for the satellite case. The left-most
image has been replaced with the satellite’s radius.

Figure 5: Three plots from the ‘Perturbed DiskHalo’ test.

1.5 Advanced Topics

What are the implications of G = 1, and why should I use virial units? exp does not allow for
different values of G (in Poisson’s equation12, ∇2Φ = 4πGρ), but rather sets G = 1. exp is best run in so-
called virial units, as the code is hard-wired to only allow a gravitational constant G = 1 (this is different than
gadget-X !). Using G = 1 means that virial units are typically convenient numbers, but means that porting
initial conditions and masses to run in exp takes particular care (see equations below13).

In virial units, we set Rvir = Mvir = Vvir = Tvir = 1. Using these units14, one can then back out various
physical length, velocity, mass, and time scales (Rphysical,Mphysical, Vphysical, Tphysical, and even the physical
force Fphysical) by simply multiplying the virial quantity by the physical quantity, provided three of the four are

12Note also that spherical model tables for basis construction do not include 4π (which is applied throughout the code), but is
rather just the second numerical derivative to match the Poisson equation, ∇2Φ = 4πGρ. One must take care when constructing
tables – for next time!

13And use the value of G for astronomy purposes: G = 4.3009125× 10−6(km s−1)2 kpcM�−1.
14Recall the the underpinning for the units is simply

Vvir = V (Rvir) =

√
GMvir

Rvir
= 1.
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specified. Typically one will specify Rvir, Mvir, Vvir through the initial conditions, and let the time be set:

Tphysical =
Rphysical

Vphysical

Mphysical =
1

G
RphysicalV

2
physical

Fphysical =
Vphysical
Tphysical

(1)

Note that here, Tphysical is in kpc/km s−1, but one can straightforwardly convert to Gyr, if desired – but using
interchangably is typically fine15. For example, in the Milky Way, we will assume16 that Rphysical = 300kpc,
Vphysical = 120 km s−1, Mphysical = 1012M�. This makes the physical time unit Tphysical = 2.44Gyr. One
advantage of virial units is that they make the scaleability of simulations readily apparent. One can simply
scale up or down the simulation to be equally applicable from (stellar) clusters to Milky-Way-sized halos,
provided the right physical scalings.

Another advantage of operating in virial units for N -body work is that the timestep will perfectly correspond
to some fraction of an orbit at the virial radius. This dictates the timestep recommendations above, set in the
Global stanza.

To be added: a discussion of how to easily convert between different unit systems.

What should I choose for the centre of my expansion? A note about centering17. The default recom-
mendation is that one not change the expansion centre from the inertial centre. This default will work for a
wide variety of problems that are angular-momentum conserving, including secular disc evolution, small halo
perturbations, bar formation, etc. This will not work in the case of something like a large satellite flyby, where
the response of the host galaxy is important. In such a case, one must engage the centering routines, which are
specified per component, in the component stanza, under ‘parameters’. For example:

1 − name : dark halo
2 parameters :
3 n l e v e l : 1
4 index ing : true
5 EJ : 2
6 EJdryrun : fa l se
7 nEJwant : 1000
8 nEJkeep : 0
9 EJdiag : true

This set of configurations tells exp to engage the Orient code in configuration EJ : 2, which tracks the
potential centre, does apply the centre (EJdryrun : false), uses the 1000 particles nearest to the potential
centre (nEJwant), does not apply any smoothing (nEJkeep), and prints the diagnostics (EJdiag : true). This
will now output a file tagged with .orient.. Please be careful with centering: the algorithm can fail
in certain circumstances. Always check the diagnostics for anything ‘weird’ !

The .orient. files are your diagnostic friends. There is GitHub gist available to read the output files here.
There are several types of columns, which dump the diagnostics from the code (see Orient.cc):

1. The axis orientation computed from regression (if nEJkeep=0, this will be the same as the particle algo-
rithm)

2. The axis orientation computed from the particle algorithm

3. The centre computed from regression (if nEJkeep=0, this will be the same as the particle algorithm)

4. The centre computed from velocity integration (analytic)

5. The centre computed from the particle algorithm

As another example, here’s a set of parameters I used to track the LMC in a recent simulation, annotated
with what they are doing (I left off the force call, but you can keep yours in there):

1 − name : lmc
2 body f i l e : lmcNhalo3 . 4Ma. bods
3 parameters :

15Further easing our translations, the conversion from s/Gyr to km/kpc is nearly unity: 3.154× 1016/3.086× 1016 = 1.02203.
16Using a mass model for the Milky Way, I set the virial radius and total mass, then backed out the velocity by taking the

observed circular velocity at the solar circle (230km s−1) and dividing by the virial velocity at that the solar circle.
17The topic of centering in basis function expansions is likely the topic of several papers, so we will be extremely brief here.
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4 n l e v e l : 1 # ( not c en t e r ing r e l a t ed , but l e a v e as 1 : t h i s s e t s which l e v e l i s the con t r o l l e v e l )
5 EJdryrun : fa l se # says yes , do t r a c k i n g
6 EJ : 2 # se t s t r a c k i n g method . 2 means f o l l ow the most−bound p a r t i c l e s as the cen t re
7 nEJkeep : 1 # se t s the temporal smoothing o f the cen t re . 1 s e t s t h i s to have no smoothing , which i s what we want
8 nEJwant : 50000 # se t s the number o f most−bound p a r t i c l e s to t rack : t r y s e t t i n g to 1% of the t o t a l system number
9 EJkinE : true # use the k i n e t i c energy + p o t e n t i a l energy f o r t r a c k i n g ( ver sus j u s t p o t e n t i a l ?) d e f a u l t t rue .

10 EJdiag : true # i f true , p r i n t s out the d i a gno s t i c in format ion to a f i l e [ comp ] . o r i en t . [ runtag ] . we d e f i n i t e l y want t h i s !
11 EJx0 : 0 . 1 # guess at i n i t i a l x cen t re
12 EJy0 : 1 .75 # guess at i n i t i a l y cen t re
13 EJz0 : −0.13 # guess at i n i t i a l z cen t re
14 EJu0 : −0.03 # guess at i n i t i a l vx cen t re
15 EJv0 : −0.7 # guess at i n i t i a l vy cen t re
16 EJw0 : −0.25 # guess at i n i t i a l vz cen t re

The only parameter you must set to get expansion tracking is EJdryrun : false. The others are helpful,
but not crucial (exp will make best guesses at all of them). I would personally recommend using the parameters
set in the above example (EJ, nEJkeep, nEJwant, EJkinE, EJdiag), and replacing the guess at centre position
and velocity with whatever you specify for the starting position and velocity of the cluster. Also change nEJwant
to be some fraction of your particle number.

I have access to a GPU (or several). Can I use that? One of the other highly attractive features of
exp is its easy portability to Graphical Processing Units (GPUs). Any of the runs above could be replicated
using the GPU side of exp , but as accessing GPUs tends to be cluster-specific, we will not test GPU runs
during the tutorial. However, if you know how to access GPUs on your own machine, it is trivial to convert an
exp .yml script to run on GPUs. Simply add the following line to the Global stanza:

1 use cuda : true

The rest is figuring out how to properly harness the hardware. The typical call to get an interactive GPU job
will look something like

1 srun −n8 −p as t ro th gpu −−mem=24G −−g re s=gpu : 2 −−pty $SHELL

where -p specifies the name of the queue (partition) that hosts the GPUs, and gres=gpu:2 requests GPU
hardware, and specifically two of them.

I’m ready to optimise the runtime. What do I need to know about the timestep criteria? In
galaxy-scale simulations, the dynamical time can vary enormously between the inner and outer galaxy. If
one were to choose a timestep based on the centre of the galaxy, the particles in the outskirts would take
an unreasonably huge number of steps, and be strongly overresolved. To mitigate this problem, exp features
adaptive timesteps, where each particle sets its own timestep based on guidelines from the user.

For choosing timesteps and diagnosing errors, there is an output file called [runtag].levels that contains
information about the multistep scheme. If you inspect this file, you will see a lot of information about what
timesteps different particles are taking. Multistep is organised hierarchically in powers of 2, so particles at level
0 always take step dt (specified in the .yml), while particles in level 7 will take 2(10) = 1024 steps per dt. The
multistep level is set adaptively by timestep criteria, so it’s possible this is what’s grinding the evaluation to
a halt. In general, you want particles to be spread between the different multistep levels to achieve optimal
performance. We can achieve this by adjusting multistep (probably down, 10 is huge), or the primary timestep dt
(if no particles are in the lowest multistep levels). For instance, if you look at run0.levels (from livesphere.yml),
I see a reasonable spread between all multistep levels.

As an example, see a realisation of a larger Plummer cluster with bc = G = M = 1 and dtime=0.2:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −−− Component <plummer , sphereSL>, T=0.0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 L Number dN/dL N(<=L) f ( q/v ) f ( v/a ) f ( s /v ) f ( r /v ) f ( r /a ) f ( i n t )
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 0 11296 0 .043 0 .043 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
7 1 18326 0 .070 0 .113 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
8 2 63307 0 .241 0 .354 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
9 3 124273 0 .474 0 .829 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000

10 4 38141 0 .145 0 .974 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
11 5 5940 0 .023 0 .997 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
12 6 748 0 .003 1 .000 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
13 7 113 0 .000 1 .000 0 .000 1 .000 0 .000 0 .000 0 .000 0 .000
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let’s start with the .levels file. This file is telling you how many particles are in each level, at each timestep.
The levels L are listed in the first column, as [0,1,...,7]. These will have timesteps of [dt/20, dt/21, ..., dt/27]. The
second column tells you how many particles are in that level, then the next column is the fraction of particles at
or below that level (the cumulative number), and then six columns that specify which of the timestep criteria
were used for what fraction of particles.

2 BFE expansion

One application of the machinery in exp is the BFE expansion of ‘arbitrary’ distributions. exp makes the
process relatively painless, at the expense of pre-planning and models that must be carefully designed to take
advantage of the high-fidelity, low-noise advantages of BFE. This tutorial covers how to design your own basis.
The main reference for the theory behind the bases is ‘exp : N -body integration using basis function expansions’
by Petersen, Weinberg, Katz (2022).

The first order of business is to decide which exp expansion method works for you. There are two different
basis methods inside exp :

1. sphereSL uses Sturm-Liouville solutions to the Poisson equation to represent radial basis elements, and
spherical harmonics for angular basis elements. This should be used for roughly spherical components
where one wishes to include self gravity.

2. cylinder starts with a high-order Sturm-Liouville basis and creates empirical orthogonal functions that
best match the target density distribution18. This should be used for flattened objects, like discs.

We’ll cover both in this tutorial, focusing first on spherical distributions before moving to disc distributions.
Whichever basis you use, the units must be the same between the basis and particles: that is, if you have
particles in virial units, the basis must be in virial units, but if you have particles in physical units, the basis
must be in physical units.

Goals for this session:

1. Understand what is in a spherical and cylindrical basis.

2. Build a simple, arbitrary spherical basis.

3. Build an exponential disc basis (and plan for extensions).

4. Use haloprof or diskprof to output coefficients.

We’ll use the same tutorials as in the first session. We’ll assume in general that you have run the simulations
to generate data, but the lessons here may be straightforwardly extended. We’ll again mostly work in the
exp directory utils/Analysis, which should be the primary codebase resource for extensions.

2.1 Spherical models

Construction of a spherical basis is straightforward, but the selection of the best radial profile is not always
simple. For a simple spherical distribution, the solution will be the monopole, or simple density distribution
with radius. For the table, we need the density profile as a function of spherical radius r (ρ(r)), the mass
enclosed profile as a function of radius (Menc(r)), and the potential as a function of radius (Ψ(r)).

In the case where the functional form of the density profile ρ(r) is known, with spherical radius r, constructing
the spherical model table is straightforward. These steps are implemented in makemodel19, but we list them
here for completeness. The general form for the potential is (see Binney & Tremaine chapter 2)

Ψ(r) = −4πG

[
1

r

∫ r

0

dr′r′2ρ(r′) +

∫ ∞
r

dr′r′ρ(r′)

]
. (2)

We can compute the potential numerically to high precision, simply from the density. Compute the mass
enclosed and the gravitational potential energy through recursion (starting from n = 1, with M0 = 0, W0 = 0,
r0 = rmin):

Mn = Mn−1 + 2π
(
r2n−1ρn−1 + r2nρn

)
(rn − rn−1)

Wn = Wn−1 + 2π (rn−1ρn−1 + rnρn) (rn − rn−1) (3)

18If you look in the code, this will be called EmpCylSL.
19Available here.
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where the r values are chosen to cover the range of the model. The potential is then computed as

Ψ(r) =
−M
r
− (W (∞)−W (r)) (4)

where we can see the correspondence with equation 2 by term, with 4πG = 1.
The virial units of the realised model may be scaled conveniently to a target total mass Mtarget and radius

rtarget by defining

β =
Mtarget

M(∞)

r(∞)

rtarget

γ =

√
M(∞)r(∞)

Mtargetrtarget

r(∞)

rtarget
(5)

and then scaling the relevant quantities through unit analysis:

rscaled = β−1/4γ−1/2rvirial

ρscaled = β3/2γρvirial

Mscaled = β3/4γ−1/2Mvirial

Ψscaled = βΨvirial

One advantage of the scaling is that one need not know ρ0, the central density, a priori.

I have a known spherical analytic density profile. How do I build a basis? If you are designing a
model from scratch, this is almost certainly the situation you will find yourself in.

The code inside of exp to build a spherical basis is remarkably straightforward. Consider the following lines
from haloprof and SphereSL.H:

1 // the c a l l from u t i l s /Ana lys i s / ha l op ro f
2 SphereSL ortho ( halo , LMAX, NMAX, 1 , r s c a l e , true , NPART) ;
3 // the c a l l as de f i ned in u t i l s /Ana lys i s /SphereSL .H
4 SphereSL ( std : : shared ptr<SphericalModelTable> mod, i n t LMAX, i n t NMAX,
5 i n t CMAP=0, double SCALE=0.067 , bool COVAR=false , i n t NPART=0);
6 // see a l s o in c lude /SLGridMP2 .H

That’s all you need to build a spherical basis inside exp ! Obviously there are some subtleties, but we already
recognise some of the parameters: LMAX is the harmonic order and NMAX is the radial order. We will learn how
to build the SphericalModelTable below. The other parameters control scalings and are generally not needed
unless using exp in some (currently) non-standard way.

To choose a minimum (RMIN) and maximum radius (RMAX) for the spherical expansion, one should consider
the smallest radius that will be probed by particles and the largest radius that has a well-defined density. These
numbers both tend to be set by the sampling of the density distribution (number of particles).

Example: a case where the density profile is known. Making a Hernquist basis table for exp .
Consider the generalised two-power distribution for a halo:

ρ(r) ∝
( r
a

)−α (
1 +

r

a

)−(β−α)
. (6)

The Hernquist profile is given by α = 1, β = 4. We can construct the model file by

1 def twopower density ( r , a , alpha , beta ) :
2 ”””a twopower den s i t y p r o f i l e ”””
3 ra = r /a
4 return ( ra∗∗−alpha )∗(1+ ra )∗∗(−beta+alpha )
5
6 r v a l s = np . l i n s p a c e ( 1 . , 3 0 0 . , 1 0 0 0 )
7 dens = twopower density ( rva l s , 3 5 . , 1 , 4 )
8 p l t . f i g u r e ( f i g s i z e =(4 ,4))
9 p l t . p l o t (np . log10 ( r v a l s ) , np . log10 ( dens ) )

10 p l t . x l ab e l ( ’ l og rad iu s ( kpc ) ’ )
11 p l t . y l ab e l ( ’ l og dens i ty ’ )
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We can check our numerically-computed potential against the analytic potential for a Hernquist model, given
by (cf. BT08 eq. 2.67)

ΨHernquist = −G
∫ ∞
r

dr
M(r)

r2
= −4πGρ0a

2 1

2
(
1 + r

a

) (7)

Additionally, getting the overall normalisation (i.e. mass) is not crucial as the coefficients can take care of the
overall normalisation.

Figure 6: Two plots validating the model table construction.

I have a spherical-ish distribution of particles. How do I build a basis? The procedure is very similar
to the process above: you must define a spherical density distribution, and then generate a spherical model file.
Typically we’d recommend one of two options:

1. If the number of particles is large enough (e.g. over a million), construct an empirical density profile.
The profile must be sufficiently smooth (by-eye inspection) as the basis uses these values
directly.

2. Define a functional form that is nearly the density profile of the spherical distribution and design the basis
from that.

Either option should be straightforward to implement; we can supply code to do either, if helpful.

I have a spherical-ish distribution of particles and a basis. How do I compute coefficients? As
a test, let’s see if we can recreate the same coefficients for the satellite-affected DiskHalo run from the first
tutorial.

1 mpirun −np 16 ha lop ro f −−LMAX=4 −−NMAX=16 −−MODFILE=SLGridSph . model
2 −−outd i r=/nas/ astro−th/mpetersen/NBodyTutorial /DiskHalo −−c o e f s=co e f s
3 −−d i r=/nas/ astro−th/mpetersen/NBodyTutorial /DiskHalo −−beg=0 −−end=100 −−p r e f i x=OUT
4 −− f i l e t y p e=PSPout −−RMAX=1 −−RSCALE=0.067 −−CONLY −v −−runtag=run1 −−compname=”dark halo ”

We can now compare against the original coefficients from the run:

1 from exptoo l . i o import outcoe f
2 C = outcoe f . OutCoef ( ’ /Users /mpetersen/Downloads/ c o e f s . c o e f s ’ )
3 C2 = outcoe f . OutCoef ( ’ /Users /mpetersen/Downloads/ outcoe f . dark . run1 ’ )
4
5 p l t . f i g u r e ( f i g s i z e =(4 ,4))
6
7 p l t . p l o t (C2 .T,−C2 . c o e f s [ : , 0 , 1 ] , l a b e l=’ o r i g i n a l ’ , c o l o r=’ black ’ )
8 p l t . p l o t (C.T,C. c o e f s [ : , 0 , 1 ] , l a b e l=’ r e cons t ruc t ed ’ , c o l o r=’ red ’ , l i n e s t y l e=’ dashed ’ )
9

10 p l t . l egend ( )
11 p l t . x l ab e l ( ’ time ’ )
12 p l t . y l ab e l ( ’ amplitude ’ )
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Figure 7: Comparison of the spherical coefficients from the simulation, and reconstructed.

2.2 Cylindrical models

Cylindrical models are modestly less well-studied than spherical models, for the sole reason that we are the only
ones using them presently. One should generally have have some sense of the underlying structure in the disc
component in order to realise a disc basis, but one can also make a basis directly from particles. In particular,
one can either

1. Start from a parameterised function for the disc basis (primary mode), or

2. Feed in a particle distribution and let the algorithms do the work, if one has a distribution of particles
already (most relevant for cosmological simulations).

We’ll cover both cases.

How do I design a basis that will work for an analytic exponential disc? The most well-studied
cylinder basis case is that of the exponential disc. One can extend the models to additional density distribu-
tions, but these are not currently as well-studied (though they would be a fun project!). The program cylcache

is specifically designed for the purpose of building an analytic disc basis.
exp currently supports the following disc geometries as analytic densities:

1. constant cylindrical slab

2. Gaussian radial profile, constant vertical profile

3. Miyamoto-Nagai (MN)

4. Standard one-component exponential

5. Two-component exponential (sum of two exponentials with different a and z)

If all you care about is constructing a basis, you can simply run gendisk in the default mode and stop after
the basis is constructed. We are currently working to reset default values. The most relevant settings (with
typical values) are

1 MMAX = 6 # the number o f az imutha l harmonics
2 NORDER = 12 # the number o f r a d i a l b a s i s e lements per harmonic
3 ASCALE = 0.0141 # the s c a l e l e n g t h o f the expansion
4 HSCALE = 0.002 # the s c a l e h e i g h t o f the expansion

You will also need a halofile. You can simply pull one from a different tutorial directory.
To run,

1 srun −n64 −−e x c l u s i v e −−pty $SHELL
2 cd /nas/ astro−th/mpetersen/NBodyTutorial /CylBasis
3 mpirun gendisk −−conf=template . c on f i g # genera te a d e f a u l t f i l e
4 mpirun −np 64 gendisk −−input=model . conf
5
6 mpirun −np 16 cy l cache −−ASCALE=0.01 −−HSCALE=0.001 −−LMAX2=32 −−NMAX2=32
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I have a disc-like distribution of particles. How do I flexibly build a basis? exp can also build a
cylinder basis from particles themselves and some simple assumptions about the density distribution. This is
expensive, and has not yet been fully reviewed for force accuracy. Within constrained situations, however, this
can be a very workable option. The telltale signs to look for in basis construction will look something like:

1 EmpCylSL : : c a che g r i d : e r r o r opening f i l e
2 Cyl inder : can not read EOF f i l e </nas/ astro−th/mpetersen/NBodyTutorial /DiskHalo / . e o f . cache . run2>
3 Cyl inder : w i l l attempt to generate EOF f i l e , t h i s w i l l take some time ( e . g . hours ) . . .
4 EmpCylSL : : make sl ( ) : making SLGridSph with <Exponential> model

Example: building a cylindrical basis to run N-body If exp doesn’t find the cylinder cache, exp will at-
tempt to make a basis from scratch. You can see an example of this by saving NBodyTutorial/DiskHalo/galaxy.yml
as NBodyTutorial/DiskHalo/galaxyadapt.yml and changing the disc component stanza to read:

1 − name : s t a r d i sk
2 parameters : { n l e v e l : 1}
3 body f i l e : d i sk . bods
4 f o r c e :
5 id : c y l i nd e r
6 parameters :
7 acy l : 0 .01
8 hcy l : 0 .001
9 mmax : 4

10 ncy lo rde r : 4
11 lmax : 32
12 nmax : 32
13 ncylnx : 256
14 ncylny : 128
15 l o g r : fa l se
16 s e l f c o n s i s t e n t : true
17 PNUM : 1

The last parameter, PNUM, sets the number of azimuthal resolution elements for computing the basis. If the
distribution is axisymmetric (i.e. an initial disc), this may be safely set to 1, which results in an enormous
speed-up in basis construction. You should also change the runtag setting from run0 to run2 in all four places
it occurs in galaxyadapt.yml. If you now run

1 mpirun −np 64 exp −f galaxyadapt . yml

exp will create a disc basis and start running the simulation. Note that without some tinkering under
the hood, the method of generating a cylindrical cache from the particles should only be used
on an exponential disc. Please talk with Mike or Martin if you want to test a different density
distribution.

I have a disc-like distribution of particles and a basis. How do I compute coefficients? exp has a
cylindrical equivalent of haloprof called diskprof . The calls are slightly different (but will be homogenised!),
but the basic idea is the same. The largest change is that one should feed in a cachefile (although diskprof will
attempt to make a basis if a suitable cachefile is not found – with the same caveats as above).

A typical call will look something like

1 mpirun −np 16 d i s kp r o f −v −−c a c h e f i l e =. eo f . cache . run2
2 −−outd i r=/nas/ astro−th/mpetersen/NBodyTutorial /DiskHalo −−c o e f f i l e=c o e f s
3 −−beg=0 −−end=100 −−p r e f i x=OUT −− f i l e t y p e=PSPout −−runtag=run2 −−compname=” s t a r d i sk ”

2.3 Validating the basis

Validating bases is a large topic in it’s own right, so we will not cover it in detail here. In general, the best
defense against wonky bases is simply to inspect them. exp will dump basis images if asked, and the Python-
based exptool has readers that will interface with the caches. If in doubt when designing a new basis,
ask!

1 from exptoo l . u t i l s import halo methods
2
3 s p h f i l e = ’ /Users /mpetersen/CodeHold/ sphexpansion /data/SLGridSph .mw. run9mlde ’
4 mod f i l e = ’ /Users /mpetersen/CodeHold/ sphexpansion /data/ErkalMW. model ’
5
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Figure 8: Comparison of the spherical coefficients from the simulation, and reconstructed.

6 lmax , nmax , numr , cmap , rmin , rmax , s ca l e , l t ab l e , evtable , e f t a b l e = halo methods . r e ad cached tab l e ( s p h f i l e )
7 xi , rar r , p0 , d0 = halo methods . i n i t t a b l e ( mod f i l e , numr , rmin , rmax , cmap , s c a l e )

1 # using the c a l l s from above to read in the cache f i l e s . . .
2 import numpy as np
3 from exptoo l . b a s i s import s ph e r e s l
4
5 l lmax = ( lmax+1)∗( lmax+1)
6 expcoe f = np . z e r o s ( [ llmax , nmax ] )
7 expcoe f [ 0 ] [ 0 ] = 6 .0
8 expcoe f [ 1 ] [ 0 ] = 0 .01
9

10 r = 0.01 # 3d rad ius
11 costh = 0 .0 # = z/r
12 phi = 0 .0 # azimuth
13
14 den0 , den1 , pot0 , pot1 , potr , pott , potp = sph e r e s l . a l l e v a l ( r , costh , phi , expcoef , xi , p0 , d0 , cmap , s ca l e , lmax , nmax , evtable , e f t a b l e )
15
16 p r i n t ( potr )
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